Functional Aspects in Portuguese NER

Eckhard Bick
Institute of Language and Communication
University of Southern Denmark
eckhard.bick@mail.dk

Outline

- Two versions of a rule based NER system: lexematic versus functional
- Identification of name chains: Name part mapping and disambiguation
- Semantic classification: Lexical vs. contextual
- Micromapping and macromapping
- Evaluation results
- Perspectives

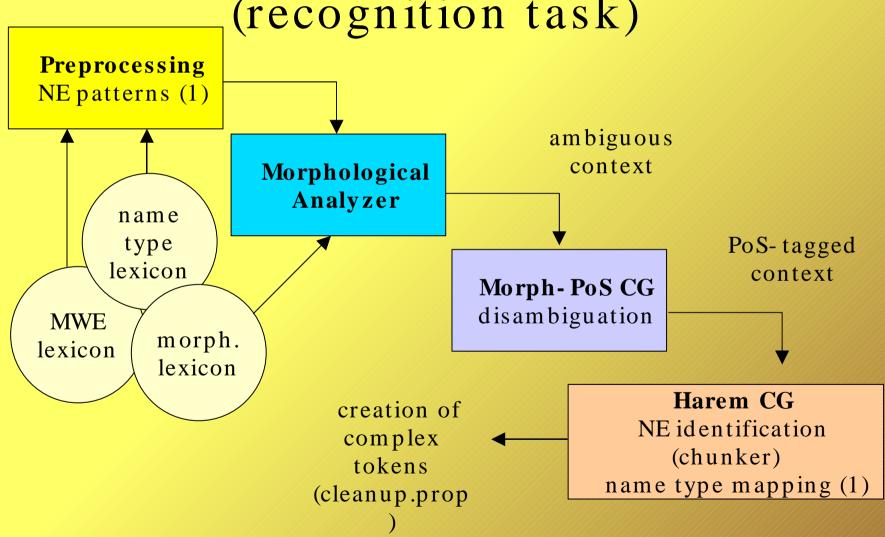
Introduction

- State- of- the- art NER systems often use lexical and grammatical information, as well as extra-textual gazeteer knowledge
- BUT: Most do so in a framework of data-driven statistical learning (HMM, Maximum Entropy, Memory based or Transformation based learning)
- While this is fine where language independence is desired (e.g. CoNLL shared tasks 2002 & 2003), language-specific systems or subsystems may well profit from explicit linguistic knowledge (i.e. Hand-written rules or lexica), e.g. Johannesen et al. 2005 (CG), Petasis 2004 (human rule-modification)
- The system presented here (PALAVRAS- NER) is an extreme case, since it is entirely based on hand-written rules, both locally and globally (sentence contex), not only in assigning grammatical tags for use by the NER system, but also within the latter itself

Previous work: Pal- 1 NER

- Based on a syntactic CG parser (PALAVRAS)
- NER-module for PROPOR '03, Linguateca's avalia-SREC (03)
- 6 basic name categories (recommended by Nomen Nescio project)
- Names as MWEs (with categories assigned to the whole, not the parts)
- Category assignment (for later CG-disambiguation) at 3 levels
 - Known lexical entries and gazeteer lists (ca. 17.000)
 - Pattern-based name type prediction (morphological module)

Core changes in Pal- 2 NER


- Extension to over 40 NER categories (vs. 6/20)
- Change from lexeme-based to a token-based description: functional and context-dependent categories rather than stable lexematic categories
- As a consequence substantial changes in the rule body, as well as remapping of also lexically known material
- Pattern-based name chain recognition now enhanced by rule-based name-

NE recognition as MWE

- With the exception of sence-initial position (PoS disambiguation problem), NE identification means MWE recognition
- Pal-1: preprocessor tokenisation, Pal-2: dynamic, grammar-based tokenisation:
 - --> 1. pattern guess
 - --> 2. lexicon check
 - --> 3. MWE candidate parts are analysed individually (PoS, morphology, semantic prototype), allowing contextual chaining with BEGIN (@prop1) and CONTINUE (@prop2) tags
- Advantages:
 - 1. Analyzer can "conclude" gender and number from parts
 - 2. a special grammar can *change* the very composition of a name MWE, by removing, adding or replacing @prop1 and @prop2 continuation tags

Name chain identification modules

(recognition task)

Name part mapping rules

Pal-2 can progressively increase the length of a half-recognized NE chunk in a grammatically founded and context-sensitive way by

- Adding conjuncts: Doencas Infecciosas e Parasitárias
 MAP (@prop2) TARGET (KC) (-1 < prop2> LINK 0 ATTR)
 (1 < *> LINK 0 ATTR) MAP (@prop2) TARGET < *> (0
 ATTR) (-1 KC) (-2 < prop2> LINK 0 ATTR)
- Adding pp's: a Câmara Municipal de Leiria
 MAP (@x @prop2) TARGET PRP- DE (*- 1 N- INST
 BARRIER NON- ATTR LINK 0 < prop1>) (1PROP LINK 0 < civ> OR < top>)
- MAP (@x @prop2) TARGET PROP (0 < civ> OR < top>)
 (-1 PRP- DE) (*-2 N- INST BARRIER NON- ATTR LINK 0 < prop1>)
- Exploiting valency:
 MAP (@prop1) TARGET <*> (0 <+ a>) (1 PRP- A) (NOT)

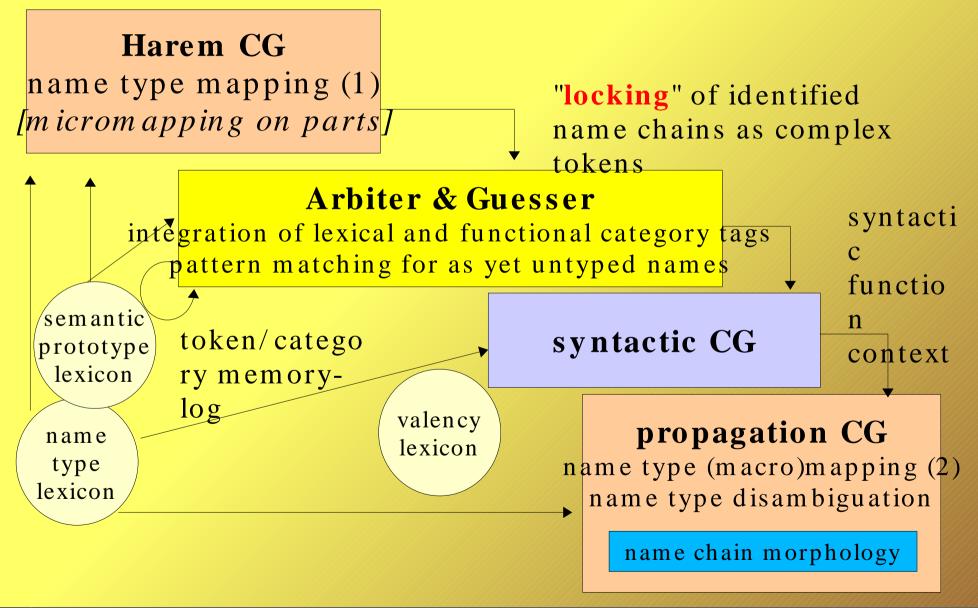
Name part disambiguation rules

REMOVE and SELECT rules decide for each name part candidate if it is valid in context and if it is a first (@prop1) or later (@prop2) part of the chain, a "misassumed" (i.e. ex-) name part (@x) or a confirmed no-name (@y)

• REMOVE (@prop2) (0 < artd> OR PRP- DE LINK 0 @y) (NOT 1 @prop2)

HAREM- results:

F-Score of 80.61% in both the selective and total measures


Semantic typing (classification task)

- 6 super- and 17 partly experimental subcategories (Pal-1) had to be turned into 9 super- and 41 subcategories (HAREM, Pal-2)
- Many-to-many relation between categories, new areas (e.g. numbers as names)
- Descriptive and methodological problem: Metonymy
 - Lexematic view: <civ> = place and organisation, allowing both + HUM subjecthood and BE- IN- LOC adverbiality.
 - Functional view: < civ> unmappable, since mapping it into < top> would result in errors where a country acts like a humanoid group.

5 levels of lexicon (in)dependence

- (1) Lexicon-entered names with a reasonably **unambiguous name category** (e.g. Christian names, but not surnames -> styles, work of art)
- (2) Lexicon-entered names with semantically **hybrid categories** (<civ>, <medi>, <inst>) or with systematic mataphoring (
brand> as <object>)
- (3) pattern/morphology-matched names of type (1)
- (4) pattern/morphology-matched names of type (2)
- (5) Names recognized as such (upper case, name chaining), but without a lexicon entry or a category-specific pattern/morphology match
- Pal-1: "hard-wired" ambiguities, only few override rules, 5% errors for lexicon-derived material
- Pal-2: lexicon-derived categories are weighted as heuristic indications only, "known" (1-2) and "unknown" (3-5) names are submitted to the same rules --> higher ambiguity and

Name typing modules (identification task)

(name type rules based on name parts and patterns)

MAP (@admin @prop1) TARGET < *> (0 < civ> OR N-CIVITAS) (*1 V-NONAD BARRIER CLB LINK 0 V-HUM) (NOT 0 < prop2>)

- first NE part carries type tag, type information and chunking information can be mapped at the same time
- After "freezing" NE chunks, the Arbiter checks unsafe (e.g. hum?) or nil-readings against lexicon data and morphological patterns
- The Arbiter logs names and types to help resolve e.g. Abbreviations and gender for person names
- Number expressions (= names in HAREM, even when quantifiers) need to be micromapped, because CG so far is "character-blind"

(Name type rules based on syntactic propagation)

Adds name type tags to already-identified name chains by using a number os syntactic "propagation" techniques (adapted Pal-1), exploiting semantic information elsewhere in the sentence, plus the fact that besides functioning as subjects and objects like other np's, names can fill certain more specific syntactic slots:

- @N< (valency governed nominal dependents): o presidente americano George Bush
- @APP (identifying appositions): uma moradora do palácio, **Júlia Duarte**, ...
- @N<PRED (predicating appositions)
- Os marchadores Susana Feitor (CN Rio Maior) e José Magalhães (Alfenense)

Cross-nominal prototype transfer: Postnominal or predicative names (NE @N<, PRP @N< + NE @P<, @SC, @OC) inherit the semantic type through of their noun-head

- MAP (<top>) TARGET (PROP @N<) (-1 N-TOP);
- MAP (<top>) TARGET (PROP @P<) (-1("de" PRP @N<) (-2 N-TOP);
- SELECT (<top>) (0 @SUBJ>) (*1 @<SC BARRIER @SUBJ LINK 0 N-TOP);

More detailed rules can match such information between main and relative clauses.

Coordination based type inference: Types are propagated between conjuncts, if one has been determined, the other(s) inherit the same type.

- the syntactic module supplies a secondary tag for "close/safe coordinators" (&KC-CLOSE), with one rule for each matched syntactic function, then uses it for disambiguation:
- REMOVE %non-h (0 %hum-all) (*-1 &KC-CLOSE BARRIER
 @NON->N LINK *-1C %hum OR N-HUM BARRIER @NON-N<);
- SELECT (<top>) (1 &KC-CLOSE) (*2C <top> BARRIER @NON->N);

Selection restrictions: Types are selected according to semantic argument restrictions, i.e. + HUM for (name) subjects of speechand cognitive verbs, + TIME is selected after temporal prepositions etc.

- REMOVE %non-hum
 (0 @SUBJ> LINK 0 %hum-all)
 (*1 @MV BARRIER ser/estar/ficar LINK 0 V-HUM);
 [@MV = main verb, @SUBJ = subject]
- REMOVE %non-org
 (0 @ <ACC LINK 0 %org/inst) (*-1 @MV LINK 0 V-ADMIN);
 [@<ACC = accusative/direct object]

CG: macromapping is both mapping and disambiguation, cf. (3), where many rules discard whole sets of name type categories by targeting an *atomic semantic feature* (+ HUME or + TIME) shared by the whole group.

Global HAREM results for PALAVRAS- NER,

semantic classification - absolute/total (i.e. all NE, identified or not) combined metric for 9 categories and 41 subcategories (types)

PALAVRA	Category (incidence)	F-Score (precision - recall)			
S Subtype		cat total	cat/types total	identificat ion	
hum official member groupind groupoffici grouporg	hum	67.4	65.6	65.0	
	PESSOA	61.1-75.2	59.3-73.4	58.6-72.7	
	20.5 %	rank <mark>1</mark>	rank <mark>1</mark>	rank <mark>1</mark>	
admin inst, party org suborg	org	58.7	50.0	56.3	
	ORGANIZACAO	53.3-65.4	45.3-55.9	51.0-62.7	
	19.1 %	rank <mark>1</mark>	rank 1	rank 1	
date hour period cyclic	TEMPO 8.6 %	75.5 79.8-71.7 rank <mark>1</mark>	72.2 76.1-68.7 rank <mark>1</mark>	73.5 77.7-69.8 rank 1	
address admin top virtual	top	69.6	64.3	68.6	
	LOCAL	75.1-64.8	69.4-59.9	74.1-63.9	
	24.8 %	rank 3	rank 4	rank 3	

PALAVRAS	Category (incidence)	F-Score (precision - recall)			
Subtype		cat total	cat/types total	identificatio n	
product, V copy, tit artwork pub	tit	21.3	16.5	19.7	
	OBRA	22.3-20.4	17.3-15,8	20.6-18.9	
	4.3 %	rank 1	rank 2	rank 1	
history	event ACONTECIM ENTO 2.4 %	36.2	30.8	32.7	
occ		28.9-48.6	24.6-41.3	26.0-43.8	
event		rank 4	rank 4	rank 4	
genre, brand, disease, idea, school, plan, author,abs-n.	brand ABSTRACC AO 9.2 %	43.1 47.3-39.6 rank 1	39.6 43.3-36.4 rank 1	41.4 45.4-38.0 rank 1	
object mat class, plant	object	31.3	31.2	31.3	
	COISA	25.4-40.7	25.5-40.3	25.4-40.7	
	1.6 %	rank 1	rank 1	rank 1	

Other metrics

- Selective = total (Pal-2 participated for all categories)
- European > Brazilian (F 60.3 vs. 54.7 %): general or systemspecific?

pattern and rule problems with immigrant names, TUPI-place names?

• Relative performance (typing accuracy measured for correctly recognized

names only (possible disadvantage for a good recognizer, because it will

get a larger proportion of difficult names than other systems)

Pal-1 versus Pal-2 performance

HAREM	combined		per category		PAL-1
Category	Precision	F-Score	Precision-	F-score	F-Score*
	- recall	(rank)	recall	(rank)	
PESSOA	90.1-91.9	91.0 (3)	92.7-94.0	93.4 (3)	92.5
ORGANIZACAO	77.0-79.0	78.0 (5)	91.1-92.4	91.8 (7)	94.3
LOCAL	87.7-89.3	88.5 (7)	96.1-95.5	95.8 (5)	95.1
OBRA (tit,brand,V)	58.5-59.5	59.0 (3)	75.3-76.6	76.0 (3)	ABSTRACT 84.3
ABSTR. (genre, ling)	82.6-85.6	84.1 (1)	90.5-93.2	91.8 (1)	(tit, genre, ling)
COISA (brand, V, mat)	98.8-98.8	98.8 (1)	100-100	100 (1)	OBJECT: 57.1
					(brand,V,mat)
ACONTECIMENTO	69.6-72.6	71.1 (5)	81.9-85.4	83.6 (5)	88.7
TEMPO	91.5-91.5	91.5 (4)	96.8-95.5	95.8 (5)	-
VALOR	94.2-95.8	95.0 (1)	96.6-97.6	97.1 (1)	-

Conclusion

- It was possible successfully to change a rule-based NER system from lexematic categories to functional categories
- The system had the overall best F-scores in the HAREM evaluation: 80.6 for identification and 63.0 and 68.3 for total types and category classification, BUT: performance is uneven (event and place score lower than the rest)
- Performance was lower than the best CoNLL-results (F 88.8 English, 81.4 Spanish, 77.1 Dutch, 72.4 German), BUT: CoNLL used a different metric and did a 3-way distinction only (hum, org, top + misc.), not 41 (!) like HAREM, and not as genre-mixed
- Since Pal-2 has high *relative* scores (over 90) for the 3 CoNLL categories, its identification module is a crucial candidate for improvement

Improvement strategies

- Identify strengths and weaknesses of subsystems
- If necessary, delegate the identification and classification tasks to different (sub)systems (possibly across research-groups)
- Integrate rule-based and statistical systems through a weighting scheme

Acknowledgments

I would like to thank the Linguateca team for ...

- planning,
- preparing,
- organising and
- documenting

... HAREM, and for making available a multitude of evaluation metrics in a clear and accessible format.